销售服务热线:0532-58517159

电子采购平台:eps.yihe.cn

浅析开关柜局部放电及监测技术

上传时间:2023-07-31 09:10:14 阅读次数:1090

浅析开关柜局部放电及监测技术

 

局部放电对绝缘起到破坏作用,会降低绝缘寿命,影响设备安全运行,因此局部放电越来越收到人们的重视。本文针对高压设备出现的局部放电问题,介绍了开关柜局部放电的产生机理、种类以及产生的危害,并对几种常见的局部放电监测技术进行了阐述

关键词开关柜 局部放电 监测技术

                                                                                                                                      

引言

现代电力系统对电能质量的要求越来越高,保证供电安全性、可靠性,十分重要。绝缘中的局部放电是引起电介质老化的重要原因之一。如果电气设备在正常运行电压下,其绝缘中就已经出现局部放电现象,这意味着绝缘内部存在局部性缺陷,而且这种过程必然会在整个运行期间继续发展,达到一定程度后,就会导致绝缘的击穿和损坏。测定电气设备在不同电压下的局部放电强度和发展趋势,就能判断绝缘内是否存在导致缺陷已经介质老化的速度和目前状态。因而电气设备制造厂和电力系统运行部门都很重视局部放电的问题,它已经成为确定产品质量和进行绝缘预防性试验的重要项目之一。

1  局部放电基本概念

1.1  定义  

局部放电是指绝缘结构中由于电场分布不均匀、局部电场过高而导致的绝缘介质中局部范围内的放电或击穿。它可以产生在固体绝缘孔隙、液体绝缘气泡或不同介质特性的绝缘层中。如果电场强度高于介质所具有的特定值,也可能发生在液体或者固体绝缘中。

局部放电逐渐发展,会对其周围的绝缘介质不断侵蚀,最终可能导致整个系统的失效,所以局部放电是造成绝缘恶化的主要原因,同时它也是绝缘恶化的重要征兆和表现形式,它与绝缘材料的劣化和击穿过程紧密相关,能有效地反映电力设备内部绝缘的故障,尤其对突发性故障的早期发现。

1.2  产生机理

局部放电又叫“游离”,也就是静电荷流动的意思。局部放电是电介质中的一部分原子或者分子产生电离和去电离的运动形式。电离是从外施电场中吸取能量,生成新的原子和分子。该过程会产生持续时间非常短的脉冲电流,发射电磁波,相应地会在电介质中出现发热、发光和振动(声波和超声波)等物理现象。

局部放电逐渐发展,会对其周围的绝缘介质不断侵蚀,最终可能导致整个绝缘系统的失效,所有局部放电是造成绝缘恶化的主要原因,同时它也是绝缘劣化和击穿过程密切相关,能有效地反应电力设备内部绝缘的故障,尤其对突发性故障的早期发现,它比介质损耗测量、油气体含量分析等方法要有效得多。局部放电释放能量的形式见表1

类型

方式

电磁形式

无线电波、光、热

声波形式

声音、超声波

气体形式

臭氧、一氧化二氮

 

1 局部放电释放能量的形式

1.3  产生原因

    局部放电是由于电气设备绝缘中存在薄弱点,在一定外施电压下发生的局部重复击穿和熄灭现象。如果电气设备在运行电压下长期存在局部放电现象就会对设备绝缘造成损害。局部放电过程中的视在放电量是判断设备绝缘是否老化的关键参数,视在放电量越大,表明绝缘设备的老化程度越深,存在的风险就越大。

高压开关柜中引起局部放电的主要原因有:

1)导体、外壳内表面上的金属突起,常常是由于制造和安装时造成金属表面有较尖的毛刺;

2)绝缘介质的缺陷、老化和表面的污秽造成绝缘内部或表面出现局部放电;

3)高压母线连接处、开关电路触头接触不良或断路器触头接触不良造成造成的局部放电;

4)高压设备里的可以移动的金属微粒,主要在制造、装配和运行中产生,当靠近高压导体并未接触时,就很有可能导致放电。

 

             

                              1 常见故障缺陷

2  局部放电的种类

2.1悬浮放电

悬浮放电在幅值分布上表现为放电幅值比较大而且均匀,在谱图中表现为中间较密集,上下都有一些小信号,但是相对比较稀疏。如果基准工频相位正确,则可分析其相位分布。悬浮放电在谱图上表现为发生在过零点附近。从放电间歇性来看,有的悬浮放电比较连续,但也有悬浮放电间歇性较大,因此,从间歇性无法判断。

悬浮放电多见于某部件(如连接螺栓、引线、接头等)发生表面氧化、接触不良、松动等现象。

2 悬浮放电

2.2尖刺放电

从分簇情况来看,尖刺放电可能是一簇或者两簇。因此,若在谱图上只有一簇放电,则是尖刺放电的可能性较大。如果基准相位准确,则此簇放电多发生在负峰值附近,如左图。

尖刺放电,根据故障模型与发展阶段的不同,也可能出现两簇放电,如果基准相位准确,两簇放电会集中在正负峰值附近。

从幅值分布看,尖刺放电的小信号较多,表现为下面较密集。分为两簇时,两簇的幅值分布极不对称,一簇信号较大,另一簇则表现为小而宽。有的尖刺放电会表现出一定的放电间歇性。尖刺放电多见于高压部件表面有划痕或金属突出物等情况。

3 尖刺放电

2.3沿面放电

电气设备中用来固定支撑带电部分的固体介质,多数是在空气中。当电压超过一定限制时,常在固体介质和空气的分界面上出现沿着固体介质表面的放电现象,称为沿面放电(或称沿面闪络)

从相位分布来看,沿面放电分为两簇,且分别出现在第一、第三象限。在沿面放电发展过程中,放电由峰值处逐渐向过零点发展。比如,第一象限的放电在沿面放电发展初期,放电会发生在90°附近,随着放电的发展,其逐渐向0°发展。

从幅值分布看,沿面放电也是小信号居多,即在谱图上表现为下面较为密集。两簇之间幅值特征较为接近,也会具有一定的不对称型,但其不对称性不如尖刺放电那样明显。

沿面放电是一种特殊的气体放电现象,沿面闪络电压比气体或者固体单独作为绝缘介质时的击穿电压都低。影响沿面放电电压的主要因素有:电场分布情况、电压波形、介质表面状态、空气污秽程度、气候条件等等。

 

4 沿面放电

2.4气隙放电

绝缘介质在加工的过程中,由于工艺和材料的缺陷,绝缘体内会存在杂质或气隙,形成绝缘介质中的缺陷。一般情况气隙中充满空气或碳氢气体,压力接近大气压。当外施交变高压时,绝缘缺陷处将发生局部的、重复的击穿。该现象通常是在高电场强度下,在绝缘体内电气强度较低的部位发生,产生局部放电的条件取决于绝缘装置中的电场分布和绝缘的电气物理性能。

气隙放电从相位分布与幅值分布来看,都与沿面放电极为相似,只是气隙放电中,两簇的对称性更强一些,两者很难区分。

通过专门的试验可以区别两种放电,即:逐渐加压,随着电压的提高,气泡放电表现为放电次数增多,沿面放电表现为放电幅值增大。

5 气隙放电

3  局部放电的危害

局部放电发生在一个或几个很小的区域内(如绝缘内部气隙或气泡),放电的能量是很小的,所以它的存在并不影响电气设备的短时绝缘强度。但是,如果在运行电压下长期存在着局部放电现象,即使是微弱的放电,也会对开关柜造成危害,它的破坏作用大致有两种:

1)放电点长期对绝缘件轰击造成绝缘局部损坏,逐步扩大后,最终使绝缘击穿;

2)长期放电产生的臭氧、氧化氮等活性气体在热的作用下,使局部绝缘受到腐蚀,电导增加,最后导致热击穿。

电气绝缘的破坏或局部老化,多数是从局部放电开始的,它的危害性突出表现在使绝缘寿命迅速降低,最终影响安全运行。也就是说,一台内部存在缺陷的开关柜,尽管通过了所有的出厂和验收试验,但在长期正常的运行中仍有可能发生击穿。这就是近年来人们对产品的局部放电量的监测给予高度重视的原因。

               6 开关柜局部闪络                              图7 电缆接头破损空穴放电

4  局部放电的监测方法

局部放电监测是以发生局部放电时产生的电、光等现象为依据来判断局部放电的状态。从监测源分析,局部放电监测技术主要分为声信号和电信号两部分。其中,声信号监测技术又分为接触式和非接触式两种;电信号监测技术包括暂态地点波监测法和超高频电磁波监测法。目前有脉冲电流法、超声波监测法、高频监测法等多种监测方法。

4.1  脉冲电流法

脉冲电流主要通过监测阻抗来监测变压器套管末端接地线、外壳接地线、中性点接地线、铁芯接地线以及绕组中由于局部放电引起的脉冲电流,或得一些基本放电量。监测放电脉冲的电流传感器通常用罗格夫斯基线圈制成,与被测变压器仅有磁耦合,而无电气连接。此法灵敏度高、应用广泛

当发生局部放电时,试品两端会出现一个几乎是瞬时的电压变化,在监测回路引起一高频电流,将它变换成电压脉冲后就可以用示波器等测量其波形或幅值,由于其大小与视在放电量成正比,通过校准就能得出视在放电量(一般用pC)。

8 脉冲电流检测原理图

4.2  超声波监测

是用超声波传感器接受电气设备内部或电力传输线局部放电产生的超声波,由此来监测局部放电的大小和位置。由于超声监测法受电气干扰小以及它在局部放电定位上的广泛应用,因此人们对超声监测法的研究较为深入,近年来,由于声-电换能器效率的提高和电子放大技术的发展,超声监测法的灵敏度有了较大的提高,尤其是在大容量电容器的局部放电监测方面,其灵敏度甚至高于电脉冲法。

该方法具有可以避免电磁干扰的影响;可以方便的定位;可以实现在线监测,且在线监测与离线监测的结果相同等优点。但由于超声波在电气设备内部的传播过程是一个很复杂的过程,造成在一些情况下超声定位实验不能成功;目前无法利用超声波信号对局部放电进行模式识别和定量判断,主要作为一种辅助测量方法。

9 超声检测原理图

4.3  地电波监测法

当局部放电活动出现在高压开关柜绝缘层中时,会产生电磁波。放电产生的电磁波大部分被开关柜的金属外壳所屏蔽,小部分通过金属壳体的接缝处或气体绝缘开关的衬垫传播出去,同时产生一个地电波,通过设备的金属壳体外表面传到地下去。地波在几个毫伏至几伏的范围内,存在时间很短,只是几个纳秒的上升时间。可以在开关柜工作时将探头放在开关柜的外表面监测柜内局部放电活动。

10 地点波检测原理图

 

4.4  特高频监测

特高频监测法是通过特高频信号传感器接收局部放电过辐射的超高频电磁波,实现局部放电的监测。不同类型的局部放电产生不同频率成分的电磁暂态和电磁波,频段为0.3~3GHz。UHF监测技术是一种非接触的监测方法,依据“场”的原理,通过天线传感器接受局部放电过程中辐射的超高频电磁波,从而实现局部放电的监测。由于电力系统的干扰信号主要分布在低于UHF的频段,利用UHF传感可避开主要的干扰源,且可以实现基于电磁波视差测量的放电定位,有效区分设备内部的局部放电和设备附近的放电型干扰。

11 特高频监测拓扑图

 

总结

随着我国机械工业和电力事业的飞速发展,人们对于电力系统运行水平和质量都越来越重视,为避免出现生产安全事故,必须用过多种电监测方法对高压开关柜进行局部放电监测,及时发现开关柜的运行故障,提前预防事故的发生。电力生产是国计民生的大事,电力工作人员还需要对高压开关柜的局部放电的干扰技术进行深入研究,对所出现的放电现象进行及时的判断和处理,以保证和提高电力系统的安全稳定及可靠运行

5 参考文献:

[1] 黄圣洁,梅刚,陈春生,马治亮,姚文冰,汤美云. 变压器局部放电在线监测技术研究[J]. 高电压技术.1996,04:39-42.

[2 ] 杨吉耀. 变压器局部放电在线监测系统的研究[J]. 电力设备. 20017年第18期.

[3] 张言苍,张毅刚,徐大可. 变压器局部放电在线监测的现状及发展[J]. 继电器. 2004,32(44):70-75

[4] 李文征,罗冰. 变压器局部放电试验中的故障分析及处理[J]. 电力设备. 2007,8(9):63-66.

[5] 刘云鹏;王会斌;王娟;律方成;;高压开关柜局部放电UHF在线监测系统的研究[J];高压电器;2009年01期

 

话题讨论

话题讨论1:

本文针对高压设备出现的局部放电,介绍了开关柜局部放电的产生机理、种类以及产生的危害,并阐述了几种常见的局部放电监测技术,能有效帮助设备生产从业者了解局部放电对绝缘起到的破坏作用,影响设备安全运行,从而引起高度重视,在生产和试验中,严格把关,保证产品可靠性,很有指导意义。

2023-09-05 08:49:23

回复

回复1:

对局部放电监测数据进行深入分析,研究局部放电发展规律,为设备状态评估和检修决策提供依据。

2023-10-16 21:58:06

回复

话题讨论2:

局部放电是发生在电气设备绝缘系统中局部区域的放电现象,其能量较小,不会立即导致绝缘击穿,但长期存在会逐渐劣化绝缘,最终引发设备故障。开关柜作为电力系统中重要的配电设备,其内部绝缘结构复杂,运行环境恶劣,容易发生局部放电。

2024-02-28 09:58:12

回复

话题讨论3:

开关柜局部放电监测技术是保障电力系统安全稳定运行的重要手段。随着技术的不断发展,局部放电监测技术将更加智能化、网络化,为电力系统的安全运行提供更加可靠的保障。

2024-06-26 15:57:17

回复